
EVOLUTION OF THE FERMILAB CONTROL SYSTEM

J. Patrick†, FNAL, Batavia, IL 60510, USA

Abstract

The Fermilab accelerator complex is currently running
to simultaneously provide beam for 2 TeV proton-
antiproton collider operation including antiproton
stacking, 8 GeV miniBooNE operation, and 120 GeV
fixed target operation. The current accelerator control
system, generally referred to as ACNET, was initially
implemented 20 years ago. In recent years, obsolete front-
end technologies have been gradually replaced. However
the bulk of the mid to high levels of the system are still
based on VAX/VMS.

While this serves the complex well, the hardware
performance of VAX processors is far below current
commodity systems, and there is little support for third-
party applications. To address this, a migration of the mid
and high-level application programs in the system is in
progress. The new system is based on a large cluster of
commodity PC and UNIX hardware, with applications
primarily written in the Java language. Extensive use is
made of web-based technologies to provide easy
distributed access to the system. This migration must be
accomplished without major interruptions to accelerator
operation, and during a time when operational demands
on the complex are at the highest level ever.

Figure 1: Fermilab Accelerator Complex

2 CONTROL SYSTEM

2.1 Overview
A single unified control system, commonly referred to

as “ACNET”, services all machines in the complex. Of
order 350 front-end computers interface hardware
elements to the control system via a variety of field buses
(CAMAC, VME, PCI, Arcnet, GPIB, etc.). These run
real-time operating systems, currently VxWorks or pSOS.
There are also a small number of Labview based front-
ends. Central Services, most of which are referred to as
Open Access Clients (OACs) are persistent tasks that run
on a high level operating system and have no user
interface. Most of these now run on UNIX systems (~90
Sun Netra), some remain on VAX/VMS. Of order 500
console applications provide the primary user interface to
the system. Most applications run on VAX/VMS systems
(~100 systems available), a migration to Java is underway
and will be described below. The primary communication
protocol between the various layers is also known as
ACNET. Currently this is a custom, connectionless UDP
based protocol running over ethernet.

1 FERMILAB ACCELERATOR COMPLEX
The Fermilab accelerator complex consists of the

following machines:
• 400 MeV linear accelerator (“Linac”)
• 8 GeV synchrotron (“Booster”). Provides beam for

the fixed target “miniBooNE” experiment .
• 150 GeV synchrotron (“Main Injector”). Provides

beam for antiproton production, on-site fixed target
experiments, and will provide beam for the MINOS
neutrino oscillation experiment in Soudan,
Minnesota beginning in late 2004.

• 1000 GeV superconducting synchrotron/storage ring
(“Tevatron”). Proton-antiproton collider for CDF and
D0 experiments. No longer used for fixed target
experiments.

2.2 Key Features • Antiproton production and accumulation facility
(“Antiproton Source”). Consists of a target station,
and 8 GeV debuncher and accumulator rings. The commercial Sybase relational database is used to

store device definitions, application specific data, and
data recorded during collider stores. The ACNET
communication protocol provides for efficient collection
of high rate data up to 1440 Hz by grouping readings into
packets returned at 5 Hz. It also supports collection of
higher rate but limited duration data known as snapshots.
System elements without a hardware clock decoder may
take advantage of clock events multicast over ethernet.
State transitions may be generated by any element and are
multicast to the entire system. An extensive user
configurable distributed data logging system provides for

• 8 GeV storage ring using permanent magnet
technology (“Recycler”). Will be used for anti-proton
storage, located in the Main Injector tunnel

The first three machines serve as an injection chain into

the Tevatron as well as the dedicated functions listed.

†patrick@fnal.gov. On behalf of the Fermilab Controls Department

Proceedings of ICALEPCS2003, Gyeongju, Korea

282

collection and storage of any device readings in the
system at 1 Hz or even greater. Applications can
transparently switch between the real accelerator and
models or archived data. A sophisticated Sequencer
program automates the lengthy process of initiating a
store in the Tevatron. A Sequenced Data Acquisition
OAC collects and stores data during each of the steps of
this process. An Accelerator Control Language (ACL)
provides scripting access to the system. Underlying the
applications are substantial libraries for data acquisition,
graphics, and support of specific hardware.

Programming was originally done in FORTRAN and
assembler, then C. Now Java is used for high-level
software and there is some C++ in front-end code.

Most of the major upgrades listed above occurred of
order 10 years ago or more. Further modernization of the
front-ends and field hardware has been done in recent
years. All MTOS and token ring based systems have now
been retired. The major remaining obsolete technology in
the system is VAX/VMS. The processor technology is
around 10 years old, much slower than even the most
inexpensive current generation PCs. Support for third
party applications is becoming progressively more
limited, and for new software products non-existent. To
address this issue, a project to migrate VAX/VMS code to
PC and UNIX is underway.

4 ACCELERATOR PLANS
The Fermilab accelerator complex is expected to

operate an average of 40 weeks/year, no lengthy
shutdowns are planned. The highest priority activity is
colliding beam running, which requires not only the
Tevatron but also all other machines in the complex for
creating and storing the antiprotons. An extensive series
of accelerator improvements are intended to increase the
luminosity by a factor of 5 over the next 5 years. In 2009,
CDF and D0 are expected to give way to the new BTeV
experiment. The miniBooNE experiment currently
consumes 80% of the protons accelerated by the Booster.
The 120 GeV fixed target program is just now beginning.
In late 2004, MINOS operation will place greatly
increased demand on Main Injector operation. This
simultaneous collider and fixed target running has not
been previously attempted at Fermilab. Given the
unprecedented operational demands on the accelerator
complex, maintaining, modernizing and upgrading the
control system to run for another decade will be a
significant challenge.

Figure 2: Overview of upgraded portion of control system

3 HISTORY
The basic concepts of the current control system date

originally from construction of the Tevatron, which began
operation in 1983. This includes the overall architecture
including a unified system for all machines, the general
application look and feel, and the ACNET
communication protocol. Over the past 20 years of course
technology has advanced and most components of the
original system have become obsolete. However the
system has continually evolved to take advantage of new
technology, provide for increasing operational demands,
and provide for reasonable maintenance.

Front-end systems originally were PDP-11 and
Lockheed-Martin MAC16 computers. These gave way to
i386 Multibus and 68000 VME based systems running
MTOS. And in recent years all of these older systems
have been replaced by VME based 68040 or Power PC
processors running VxWorks or pSOS.

5 MIGRATION STRATEGY
In order to run another 10 years, and accomplish the

required accelerator upgrades, it will be necessary to
reduce the dependence on VAX/VMS. As there are no
lengthy shutdowns planned, this must be performed in a
piecewise manner. New services or applications must
often interoperate and thus be plug-compatible with old.
Major changes to key features such as the device model,
database, and ACNET communication protocol would
thus be difficult to accommodate. While this mode of
upgrade is constraining, it does provide the opportunity to
easily compare the operation of old and new components.

Console applications originally ran on PDP-11
computers with custom graphics. These gave way to
VaxStations with X-window graphics. Currently most
VaxStations are centrally located and PCs are used as X
displays.

Communication via the ACNET protocol originally
used Digital PCL11-B links. The protocol was migrated to
IEEE 802.5 token ring links, then raw ethernet, and
finally UDP over ethernet

The general architecture of the system remains the
same. However the central layer of the system is
expanded. Communication between applications and
front-ends goes through “Data Acquisition Engines”.
These perform consolidation of requests for particular
devices across all applications running in the control
system, thus reducing the load on the front-ends. In
addition there is a “Data Server Engine” layer that bridges

Originally device and application information was
stored in DEC Datatrieve and VMS flat files. The Sybase
commercial database, originally running on VMS and
later transferred to UNIX systems, replaced this.

Proceedings of ICALEPCS2003, Gyeongju, Korea

283

the ACNET protocol to other more standard protocols.
This is discussed further in section 6.5.

The central and application layers run entirely on
commodity hardware. PCs in the control room or
elsewhere run console applications. Central services are
run on commodity UNIX systems or PCs located in the
computer room.

The decision has been made to write most programs in
the Java language. This is a modern, object-oriented
language with an extensive class library. It is platform
independent, allowing use of Windows and UNIX
systems equivalently. It is much easier to learn and use
than C++, this is a major consideration as physicists,
engineers, and other non-computing professionals write
much of the machine software. The key disadvantage is
speed of execution, however it appears to be fast enough
for control system type applications. After all the system
is currently run on 25 MHz VAXes.

The strategy is however not to simply port the existing
VMS code. Java class libraries replace parts of the
application support libraries dealing with graphics,
threads, and networking. A more object-oriented API is
provided to access data from the control system. Obsolete
code will be removed from applications, and it is likely in
some cases multiple applications can be consolidated into
one.

6 MIGRATION PROGRESS
After some initial investigation, a project to introduce

Java into the control system began over 5 years ago. The
initial emphasis was on implementation of the ACNET
protocol and infrastructure for central services [1]. The
first major project to be done in the new framework was
SDA, which is an overloaded acronym for both
Sequenced Data Acquisition, and Shot Data Analysis.
This consists of an OAC to acquire and save data during
collider stores, as well as a suite of applications to
configure the acquisition and analyze the stored data. As
well as exercising data acquisition to a variety of front-
ends, it also required development of some substantial
applications. It is critical to understanding and improving
the operation of the machine. Also, the status display
broadcast to the site cable TV network (“Notify”) was
migrated to Java and substantially enhanced.

The SDA system has been operational for the current
collider run, which began over two years ago and has
generally worked reliably. Analysis applications have
been continually improved according to machine
physicists’ requests

6.1 Distributed Data Logging
Another example of a major system that has taken

advantage of new technology is the distributed data
logging. About 70 nodes run an instance of a data logger
program that collects data assigned to it and saves it on a
local disk. Data are viewed with a plotter application.
Groups of nodes are assigned to different machines or
departments, who are responsible for what devices are

logged and at what rate. A control application allows easy
modification of a logger configuration. When the local
disk fills, the wrap around occurs and the oldest data are
dropped. The move from VAXes to newer UNIX systems
has provided for much larger disk files and thus longer
wraparound times. The MySQL database is used to store
the data rather than flat files as on VMS. A new “backup”
logger runs once per day and consolidates all data from
the previous 24 hours into a single large MySQL
database. This preserves all logged data indefinitely. New
tools to examine the data including a purely web based
plotter and simple Java API are provided.

6.2 Application Framework
Console applications written in Java are based on an

Application Framework. This framework provides a
JFrame subclass containing default menus and a toolbar.
Functionality provided by these menus includes the
ability to extract images or tables of numbers and save or
e-mail for import by other programs. Images can also be
posted directly to the electronic logbook. Program
messages are captured and saved in a database for
external viewing. The default menus may be extended
using xml configuration files.

Applications are launched by an Application Index
program. Both a Java application and a web-based applet
are available. Java Webstart is the mechanism used; it
alleviates the need to install any software on a PC other
than Java. Webstart automatically caches required code
on the local PC, and updates it when a newer version is
available. The JNLP description files required by
Webstart are dynamically generated from database
entries. This greatly simplifies maintenance of these files
for the potentially large number of applications.

Figure 3: Parameter Page application showing menus and

tool bars provided by the Application Framework.

6.3 Web Applications
It is convenient to be able to run some core applications

at remote sites where perhaps the proper version of Java
is not installed, or one is on a modem line and the time for
Webstart to load the code is prohibitive. To accommodate
this, purely browser based versions the device database
browser, parameter page, data logger plotter, and synoptic
display have been developed. There are primarily web
forms with JavaScript used in some cases. Xml encoded
requests for device data are made to a Java servlet, which

Proceedings of ICALEPCS2003, Gyeongju, Korea

284

fetches the data from the control system and returns it to
the client. Web services have been investigated for these
and similar types of applications, but are not used at this
time.

6.4 Xml-rpc
There is a need to provide access to accelerator

information by outside systems such as the experiments.
The method chosen for this is xml-rpc [2]. This is a basic
remote procedure call protocol that uses http with xml
encoding of data. In addition to remote access, it provides
convenient access from languages other than Java. While
the update rate capability will be much less than that
obtained with the internal protocols, it has proven to be
sufficient for current needs. This system is heavily used
by the CDF, D0, and miniBooNE experiments. In
addition to obtaining accelerator status information, they
also can set memory-resident devices with measurements
of interest to the machine from their detectors. For
example the beam position measured by the CDF silicon
detector, and the D0 luminosity measurement are reported
this way. For security reasons this mechanism cannot be
used to set real hardware devices.

6.5 Communication
Although the transport medium has changed, the

custom ACNET protocol has evolved only modestly over
the years and remains a foundation of the system. While
investigations of CORBA and other technologies have
been done, it has proven too difficult to implement
anything new in some of the older front-ends with limited
memory. The Java API emulates some functionality not
provided by the protocol, such as larger data offsets, time
stamps on returned data, and collection on clock events
plus delay. These features are now in the process of being
added to the protocol.

The architecture of the new system does however
incorporate a “Data Server Engine” layer that is used for
protocol bridging. Java applications actually make
requests via the Java Remote Method Invocation (RMI)
protocol. The DSE translates these into ACNET requests,
sends them to the front-end consolidators, and performs
RMI callbacks to the application with the data once it is
returned. While this increases the latency somewhat,
operations performed from applications are not time
critical at this level. Also something similar occurs with
web and xml-rpc based applications. Here http requests
are translated into ACNET requests by servlets or other
OACs in the DSE.

Considerable hardware, such as PLCs, scopes, etc. now
come with ethernet interfaces and support TCP/IP
communication. To minimize the APIs that application
programmers must learn, these are usually mapped to the
ACNET device model and protocol in one of two ways.

In the past this has mostly been done through front-end
systems, which translate ACNET requests into TCP/IP
requests to the devices. The newer OAC infrastructure
also accomplishes this easily for devices where a real-
time operating system is not required.

6.6 Summary of Migration Status
As of this time, there are about 70 OACs running in the

Java environment, only 6 remain on VMS. In addition to
the Application Framework and core applications, a small
number of machine specific applications have been
written [3]. Notable among these is a program to
automatically tune the transport line to the miniBooNE
experiment. Also, applications that deal with the Quench
Protection system have now completely replaced the
VMS versions. A working group is being formed with
representatives of the system departments to better plan
migration of machine applications. The total size of the
code base is about 3000 classes and 500,000 non-
comment lines of code.

7 SUMMARY
Although the fundamental architecture is 20 years old,

the Fermilab control system has undergone substantial
modernization over the years to take advantage of new
technology, address operational needs of the accelerators,
and ease maintainability. Recent years have seen
significant modernization of front-end systems and field
hardware. A migration path based on commodity
hardware and the Java language has been established for
addressing the primary obsolete component of the system,
VAX/VMS. Nearly all central services have been
migrated. A substantial Application Framework has been
developed, and a modest number of core and SDA
applications written in that framework. Significant use is
made of web technologies. Plans for porting the large
number of machine applications are under development.

8 ACKNOWLEDGEMENTS
Thanks go to all my many talented colleagues currently

in the Fermilab Controls Department, and to all the past
members as well who helped develop the system. The
Java migration project, the primary topic discussed above,
was initiated by Kevin Cahill.

9 REFERENCES
[1] D. Nicklaus, “Development of Java Open Access

Clients”, these proceedings
[2] http://www.xmlrpc.org
[3] S. Lackey and F. Zhang, “Fermilab Accelerator

Application Migration Project”, these proceedings.

Proceedings of ICALEPCS2003, Gyeongju, Korea

285

	EVOLUTION OF THE FERMILAB CONTROL SYSTEM
	1 FERMILAB ACCELERATOR COMPLEX
	2 CONTROL SYSTEM
	2.1 Overview
	2.2 Key Features

	3 HISTORY
	4 ACCELERATOR PLANS
	5 MIGRATION STRATEGY
	6 MIGRATION PROGRESS
	6.1 Distributed Data Logging
	6.2 Application Framework
	6.3 Web Applications
	6.4 Xml-rpc
	6.5 Communication
	6.6 Summary of Migration Status

	7 SUMMARY
	8 ACKNOWLEDGEMENTS
	9 REFERENCES

